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a b s t r a c t

This paper presents a multi-population biased random-key genetic algorithm (BRKGA) for the single

container loading problem (3D-CLP) where several rectangular boxes of different sizes are loaded into a

single rectangular container. The approach uses a maximal-space representation to manage the free

spaces in the container. The proposed algorithm hybridizes a novel placement procedure with a multi-

population genetic algorithm based on random keys. The BRKGA is used to evolve the order in which

the box types are loaded into the container and the corresponding type of layer used in the placement

procedure. A heuristic is used to determine the maximal space where each box is placed. A novel

procedure is developed for joining free spaces in the case where full support from below is required.

The approach is extensively tested on the complete set of test problem instances of Bischoff and Ratcliff

[1] and Davies and Bischoff [2] and is compared with 13 other approaches. The test set consists of 1500

instances from weakly to strongly heterogeneous cargo. The computational experiments demonstrate

that not only the approach performs very well in all types of instance classes but also it obtains the best

overall results when compared with other approaches published in the literature.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The single container loading problem (3D-CLP) is a three-
dimensional packing problem in which a large rectangular box
(the container) has to be filled with smaller rectangular boxes of
different sizes. Fig. 1 shows that 3D-CLPs can be differentiated
according to the mix of box types to be loaded. They vary from the
completely homogeneous case, where boxes have identical dimen-
sions and orientations, to the strongly heterogeneous case, where
boxes of many different sizes are present. 3D-CLPs with relatively
few box types are often referred to as weakly heterogeneous [1].
According to the typology of Wäscher et al. [3] for cutting and
packing problems, the heuristic for the 3D-CLP presented in this
paper falls into the output maximization assignment category and
can be applied to both the single large object placement problem

(3D rectangular SLOPP, weakly heterogeneous) and the single

knapsack problem (3D rectangular SKP, strongly heterogeneous).
In this paper we present a novel multi-population biased ran-

dom-key genetic algorithm (BRKGA) for the 3D-CLP. The approach
uses a maximal-space representation to manage the free spaces in
the container. The proposed algorithm hybridizes a novel placement
ll rights reserved.

es),
procedure with a multi-population genetic algorithm based on
random keys. The BRKGA is used to evolve the order in which the
box types are loaded into the container and the corresponding type
of layer used in the placement procedure. A heuristic is used to
determine the maximal-space where each box is placed. A novel
procedure is developed for joining free spaces in the case where full
support from below is required. Two versions of the approach (with
and without enforcement of full support from below) are extensively
tested on the complete set of problems of Bischoff and Ratcliff [1]
and Davies and Bischoff [2] containing 1500 instances, ranging from
weakly to strongly heterogeneous cargo and is compared with 13
other solution techniques.

The computational experiments demonstrate that not only the
approach performs very well in all types of instance classes
considered but also it obtains the best overall results when
compared with other approaches published in the literature. It
has improved the overall averages from 93.88% and 91.91% to
94.54% and 92.24% for the unsupported and supported cases,
respectively.

The remainder of the paper is organized as follows. In Section 2,
we formally define the problem. In Section 3, we present a literature
review. In Section 4, we introduce the new approach, describing in
detail the BRKGA, the novel placement strategy, and the novel
procedure used for joining maximal-spaces. Finally, in Section 5,
we report on computational experiments, and in Section 6 make
concluding remarks.
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Fig. 1. Weakly and strongly heterogeneous 3D-CLPs.
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2. The problem

The single container loading problem addressed in this paper can
be applied to any mix of box types (i.e. from weakly to strongly
heterogeneous sets of box types). Some practical constraints are
taken into account. The problem may be stated as follows: A given
3D rectangular container C is to be loaded with a subset of a given
set of rectangular boxes in such a way that all boxes are feasibly
placed, the packed volume is maximized, and the constraints are
met. A box is considered to be feasibly placed if it is arranged in such
a way that it is parallel to the side walls of the container, does not
overlap with another box, and lies completely inside the container.
The dimensions of the rectangular container C are given as L

(length), W (width), and H (height). The boxes to be loaded are
categorized into K box types depending on their dimensions. For
each box type k, there are Nk boxes with a length, width, and height
of, respectively, lk, wk, and hk, for k¼1,2,y,K.

Additional constraints, taken from the large number of con-
straints found in practice (cf. [1]) are also considered. They are:
�
 C1—orientation constraint: Originally each box can be arranged
in the container in a maximum of six rotation variants.
However, for each box, up to five rotation variants may be
prohibited by means of an orientation constraint. For example,
some boxes require that one side be always on top.

�
 C2—stability constraint: To guarantee load stability, the bottom

sides of all boxes not placed directly on the container floor must
be completely supported by the top sides of one or more boxes.
3. Literature review

The 3D-CLP is NP-hard [4]. To date, only a few exact methods
have been suggested in the literature. Fekete and Schepers [5]
present a general framework for the exact solution of multi-
dimensional packing problems. Martello et al. [6] develop an
exact branch-and-bound method (B&B) for the 3D-CLP.

Heuristics have been the only viable alternative to find optimal
or near-optimal packings. Many heuristic procedures have been
proposed for solving the 3D-CLP. Fanslau and Bortfeldt [7] classify
approaches for the 3D-CLP according to packing heuristic and
method type. They group packing heuristics as wall-building,
stack-building, horizontal layer-building, block-building, and
guillotine cutting.
(1)
 Wall-building approaches fill the container with vertical layers
(‘‘Walls’’). Among others it has been used by George and
Robinson [8], Loh and Nee [9], Bortfeldt and Gehring [10] and
Pisinger [11].
(2)
 Stack-building approaches fill the container with stacks, which
are arranged on the floor of the container in a way that saves
the most space. The heuristic of Bischoff and Ratcliff [1] and
the genetic algorithm of Gehring and Bortfeldt [12] are
examples of the use of this approach.
(3)
 Horizontal layer-building approaches fill the container from
bottom to top using horizontal layers that are intended to
cover the largest possible part of the load surface underneath.
This approach has been implemented in Bischoff et al. [13]
and Terno et al. [14].
(4)
 Block-building approaches fill the container with cuboid blocks
of boxes. The tree-search method of Eley [15], the tabu search
method of Bortfeldt et al. [16], and the hybrid simulated
annealing and tabu search method of Mack et al. [17] are
examples of the use of this approach.
(5)
 Guillotine-cutting approaches are based on a slicing tree repre-
sentation of a packing plan. Each slicing tree corresponds to a
successive segmentation of the container into smaller pieces by
means of guillotine cuts, whereby the leaves correspond to the
boxes to be packed. The graph-search method of Morabito and
Arenales [18] is based on this approach.
Fanslau and Bortfeldt [7] categorize solution methods as meta-
heuristics, tree-search methods, and conventional heuristics.
(1)
 Metaheuristics search strategies have been the preferred
method in the last 10 years. These include the tabu search
approaches (TS) of Bortfeldt et al. [16], the simulated anneal-
ing methods (SA) of Mack et al. [17], the genetic algorithms
(GA) of Gehring and Bortfeldt [12,19] and Bortfeldt and
Gehring [10], the approach of Bischoff [20], based on the
Nelder and Mead algorithm, and the greedy randomized
adaptive search procedures (GRASP) of Moura and Oliveira
[21] and Parreno et al. [22].
(2)
 Tree-search methods or graph-search methods have been
successfully applied to the 3D-CLP by Morabito and Arenales
[18], Eley [15], Hifi [23], Pisinger [11], and Fanslau and
Bortfeldt [7].
(3)
 Conventional heuristics incorporate construction methods
and improvement methods. Examples include, e.g. papers by
Bischoff et al. [13], Bischoff and Ratcliff [1], and Lim et al. [24].
Other authors have considered additional practical constraints.
For instance, Davies and Bischoff [2], Eley [15], and Gehring and
Bortfeldt [12] take into account the weight distribution of cargo
within a container. Bischoff [25] examines the impact of vary-
ing the load-bearing strength. Several studies consider loading
stability, including Bortfeldt and Gehring [10], Bortfeldt et al. [16],
and Terno et al. [14]. Other container-related factors, such as
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orientation constraints [19] and the grouping of boxes [1,26],
have also been considered.
4. Biased random-key genetic algorithm

We begin this section with an overview of the proposed
solution process. This is followed by a discussion of the biased
random-key genetic algorithm, including detailed descriptions of
the solution encoding and decoding, evolutionary process, fitness
function, and parallel implementation.

4.1. Overview

The new approach is based on a constructive heuristic algorithm
which uses layers of boxes that may take the shape of a set of
columns or a set of rows. A layer is a rectangular arrangement of
boxes of the same type, in rows and columns, filling one side of an
empty space (see Fig. 8). The management of the feasible placement
positions is based on a list of empty maximal-spaces as described in
Lai and Chan [27]. A 3D empty space in the container is maximal if it
is not contained in any other space in the container. Each time a
layer is placed in an empty maximal-space, new empty maximal-
spaces are generated. The new approach proposed in this paper
combines a multi-population biased random-key genetic algorithm,
a new placement strategy, and a novel procedure to join maximal-
spaces having the same base level.

The role of the genetic algorithm is to evolve the encoded
solutions, or chromosomes, which represent the box type packing

sequence (BTPS) and the type of layer used to place each box type.
For each chromosome, the following phases are applied to decode
the chromosome:
(1)
 Decoding of the box type packing sequence: This first phase
decodes part of the chromosome into the BTPS, i.e. the sequence
in which the box types are packed into the container.
(2)
 Decoding of layer types: The second phase decodes part of the
chromosome into the vector of layer types (VLT) used by the
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Fig. 2. Architecture of the algorithm. Evolutionary proces
placement procedure to select the type of layer used to pack
boxes into the container.
(3)
 Placement procedure: The third phase makes use of the BTPS

defined in Phase 1 and the VLT obtained in Phase 2 and
constructs a packing of the boxes. In this phase, we develop a
novel procedure, called MaxJoin, which joins maximal-spaces
having the same base level. This is done so that the support-
ing area of the maximal-spaces is increased, increasing the
likelihood that constraint C2 is satisfied.
(4)
 Fitness evaluation: The final phase computes the percentage
volume packed, the fitness measure (or measure of quality) of
the solution.
Fig. 2 illustrates the sequence of steps applied to each chromo-
some generated by the BRKGA.

The remainder of this section describes the genetic algorithm,
the decoding procedure, and the placement strategy in detail.
4.2. Biased random-key genetic algorithm

Genetic algorithms (GA) are adaptive methods that are used to
solve search and optimization problems [28,29] by associating
solutions of the optimization problem with individuals of a
population. Over many generations, natural populations evolve
according to Charles Darwin’s principle of natural selection, called
survival of the fittest [30]. By mimicking this process, genetic
algorithms, if suitably encoded, are able to evolve solutions to
optimization problems. Before a genetic algorithm can be defined,
an encoding (or representation) for the problem must be devised. A
fitness function, which assigns a figure of merit to each encoded
solution, is also required. During the run, parents are selected for
reproduction and recombined to generate offspring. Goldberg [28]
presents pseudo-codes for several variants of genetic algorithms.

In a GA, a solution is encoded as a set of parameters, known as
genes, joined together to form a string of values called a chromosome.
The set of parameters represented by a particular chromosome is
referred to as an individual. The fitness of an individual depends on
its chromosome and is evaluated by the fitness function. During the
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reproductive phase, individuals are selected from the population
and recombined, producing offspring, which comprise the population
of the next generation. Parents are randomly selected from the
population using a scheme that favors fitter individuals. Once
selected, the chromosomes of the two parents are recombined,
typically using mechanisms of crossover. Mutation is usually applied
to some individuals to guarantee population diversity.
4.2.1. Chromosome representation and decoding

The heuristic described in this paper is a biased random-key
genetic algorithm, or BRKGA [31]. It uses a random-key alphabet
comprises random real numbers between 0 and 1. The evolu-
tionary strategy used is similar to the one proposed by Bean [32],
except for the way crossover is done. An important characteristic
of this type of genetic algorithm is that all offspring formed by
crossover are feasible solutions. This is accomplished by moving
much of the feasibility issues into the objective function evalua-
tion. As will be shown below, if any random-key vector can be
interpreted as a feasible solution, then any crossover vector is also
feasible. Through the dynamics of the genetic algorithm, the
system learns the relationship between some random-key vectors
and solutions with good objective function values.

A chromosome represents a solution to the problem and is
encoded as a vector of random keys. In a direct representation, a
chromosome represents a solution of the original problem, and is
called genotype, while in an indirect representation it does not,
and special procedures are needed to derive from it a solution
called a phenotype. In the present context, the direct use of
packing patterns as chromosomes is too complicated to represent
and manipulate. In particular, it is difficult to develop correspond-
ing crossover and mutation operations. Instead, solutions are
represented indirectly by parameters that are later used by a
decoding procedure to obtain a solution. To obtain the solution
(phenotype) we use the placement strategy that we describe in
Section 4.3.5.

Recall that there are K box types and that, for k¼1,y,K, at
most Nk boxes of type k can be packed into the container. In the
description of the genetic algorithm, we are given a total of
M¼

PK
k ¼ 1 Nk boxes. Each solution chromosome is made of 2M

genes, i.e.

Chromosome¼ gene1, . . . ,geneM|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Box Type Packing Sequence

, geneMþ1, . . . ,gene2M|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Vector of Layer Types

0
B@

1
CA:

The first M genes are used to obtain the box type packing sequence

(BTPS), while the last M genes are used to obtain the vector of layer

types (VLT). The BTPS as well as the VLT are used by the placement
procedure.

The decoding (mapping) of the first M genes of each chromo-
some into a BTPS is accomplished by sorting the genes of box
Box types

Random keys

Box Type
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Fig. 3. Chromosome decoding procedure
types in ascending order. Fig. 3 shows an example of the decoding
process for the BTPS. In this example there are four types of boxes
with N1¼2, N2¼3, N3¼1, and N4¼2. According to the ordering
obtained, the box types should be packed in the order 2, 4, 2, 1, 2,
1, 3, 4. The vector of layer types VLT is defined such that

VLT i ¼ GeneMþ i,

i.e. each position i¼1,y,M of VLT is populated with GeneMþ i.

4.2.2. Evolutionary process

The population of random-key vectors is operated upon by a
genetic algorithm to breed good solutions. Many variations of
genetic algorithms, obtained by altering the reproduction, cross-
over, and mutation operators, have been proposed in the litera-
ture. The reproduction and crossover operators determine which
parents will have offspring, and how the genetic material is
exchanged between the parents to create those offspring. Muta-
tion allows for random alteration of genetic material. Reproduc-
tion and crossover operators tend to increase the quality of the
populations and force convergence. Mutation opposes conver-
gence and replaces genetic material lost during reproduction and
crossover.

In a random-key genetic algorithm, the population is initialized

with random-key vectors whose components are random real
numbers uniformly sampled from the interval [0,1]. Reproduction

is accomplished by first copying some of the best individuals from
one generation to the next, in what is called an elitist strategy [28].
The advantage of an elitist strategy over traditional probabilistic
reproduction is that the best solution is monotonically improving
from one generation to the next. The potential downside is
population convergence to a local minimum. This can, however,
be mitigated by an appropriate amount of mutation.

Parametrized uniform crossover [33] is employed in place of the
traditional one-point or two-point crossover. After two parents
are chosen at random, one selected from the best (TOP in Fig. 5)
and the other from the full old population (including chromo-
somes copied to the next generation in the elitist pass), at each
gene we toss a biased coin to select which parent will contribute
the allele. Unlike Bean [32], in a biased random-key genetic
algorithm, we always select one parent from the set of elite
solutions. Gonc-alves and Resende [31] show that, compared to
the random-key GA of Bean, this change produces results with
better quality and converges faster to good-quality solutions.
Fig. 4 presents an example of the crossover operator. It assumes
that a coin toss of heads selects the gene from the first parent, a
tails chooses the gene from the second parent, and that the
probability of tossing a heads is 0.7, i.e. the crossover probability
CProb¼ 0:7. In Section 5, we describe how this value is deter-
mined empirically.

Rather than using the traditional gene-by-gene mutation with
very small probability at each generation, a random-key GA adds
0.49
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0.32 0.77 0.53 0.85Chromosome 1 (from TOP)

0.26 0.15 0.91 0.44Chromosome 2               

0.58 0.89 0.68 0.25Random number

< > < <Relation to crossover
probability of 0.7

0.32 0.15 0.53 0.85Offspring Chromosome

Crossover

(from TOP)

0.26 0.15 0.91 0.44Chromosome 2               

0.15Offspring Chromosome

Crossover

Fig. 4. Example of parametrized uniform crossover with crossover probability equal to 0.7. The offspring resembles parent 1 more than it does parent 2.

BOT

Fig. 5. Transitional process between consecutive generations.
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a small set of new members to the population. These individuals,
called mutants, are randomly generated from the same distribu-
tion as the initial population (see BOT in Fig. 5). Like in standard
mutation, the objective here is to prevent premature convergence
of the population and leads to a simple statement of convergence.
Fig. 5 depicts the transitional process between two consecutive
generations.

4.2.3. Fitness function

To feedback the quality of a solution to the evolutionary
process, a measure of solution fitness, or quality measure, has to
be defined. The natural fitness function for this type of problem is
the percent total packed volume given by

100%

PK
k ¼ 1 vkNPk

L�W � H
,

where NPk is the number of boxes of type k packed in a solution,
vk is the volume of a box of type k and the denominator
represents the volume of the container.

4.2.4. Multi-population strategy

In the multi-population strategy used in this paper, several
populations are evolved independently in parallel. After a pre-
determined number of generations, all the populations exchange
good-quality chromosomes. When evaluating possible interchange
strategies, we observed that exchanging too many chromosomes, or
exchanging them too frequently, often leads to the disruption of the
evolutionary process. With this in mind, we chose a strategy that
after a pre-determined number of generations, inserts the overall
two best chromosomes (from the union of all populations) into all
populations. In Section 5, we show how this choice was determined
empirically.

4.3. Placement strategy

4.3.1. Maximal-spaces and the difference process

While trying to place a box in the container we use a list S of
empty maximal-spaces (EMSs), i.e. largest empty parallelepiped
spaces available for filling with boxes. Maximal-spaces are repre-
sented by their vertices with minimum and maximum coordinates
(xi, yi, zi and Xi, Yi, Zi, respectively). When searching for a place to
pack a box we need to consider only the coordinates corresponding
to the EMS vertices with minimum coordinates (xi, yi, zi). To generate
and keep track of the EMSs, we make use of the difference process

(DP), developed by Lai and Chan [27]. Fig. 6 depicts an example of
the application of the DP process. In the example we assume that we
have one box to be packed in the container (see Fig. 6a). Since the
container is empty, the box is packed at the origin of the container
as shown in Fig. 6b. To pack the next box, we first update the list S of
empty maximal-spaces. Fig. 6c shows the three new EMSs generated
by the DP process. Every time a box is packed, we reapply the DP

process to update list S before we pack the next box.
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Fig. 6. Example of difference process (DP) with and without full support.

Fig. 7. Pseudo-code of the back-bottom-left (BBL) procedure.
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There are some real applications where full support from
below (constraint C2) is not required. Fig. 6d presents the newly
generated maximal-spaces generated by the DP procedure when
full support from below is not enforced.

4.3.2. The back-bottom-left procedure

Recall from Section 4.3.4 that xi, yi, zi denote the minimum
coordinates of EMSi. The back-bottom-left (BBL) procedure orders
the EMSs in such a way that EMSioEMSj if xioxj, or if xi ¼ xj and
ziozj, or if xi ¼ xj, zi ¼ zj, and yioyj, and then chooses the first
EMS in which the box type to be packed fits. Fig. 7 shows pseudo-
code for the BBL procedure.

4.3.3. Layers of boxes

The new loading approach is based on a constructive heuristic
that uses layers of boxes. A layer is a rectangular arrangement of
boxes of the same type, in rows and columns, filling one side of an
empty maximal-space.

To determine which layer type to use to pack a box type bk we
first fill the vector Layers with all the feasible layer types that can be
used to pack box type bk into a pre-determined empty maximal-
space EMS�. Each box type can have at most six rotation variants. For
each variant, we can have at most six types of layers. Therefore, we
have at most 36 layer types. Fig. 8 shows all possible six layer types
that can be defined for one of the six box type variants and an
empty-maximal-space where the layers can be packed.
4.3.4. Joining maximal-spaces

The DP procedure presented in Section 4.3.1 generates new
EMSs each time a box is added to the container. However, when a
new box is added, the supporting area of some of the previously
generated EMSs can sometimes increase. Since the DP process
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does not take this into account, in such situations the possibility
of satisfying constraint C2 (full supporting from below) is
reduced. In this section, we develop a novel procedure we call
MaxJoin which joins maximal-spaces having the same supporting
area height.

To illustrate MaxJoin, we use the example depicted in Fig. 9, where
we assume that the box labeled x was the last one to be packed (see
Fig. 9a). Fig. 9b shows all packed boxes that have the same height as
box x. Fig. 9c shows a top-down view of the supporting area defined
by the boxes. In the remainder of this section, we restrict ourselves
only to the top-down view since the heights of the EMSs are equal
and known.

The MaxJoin procedure consists of two main steps in which
the DP procedure is applied twice to obtain the desired EMSs. In
the first step, the DP procedure is applied to subtract from the
container the spaces corresponding to the boxes (see Fig. 10a).
Note that the resulting EMSs, denoted by 1, 2, 3, and 4 in Fig. 10a,
correspond to the complement of the EMSs that we seek. In the
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second step, we apply the DP procedure to subtract from the
container the final EMSs obtained in the first step. The resulting
sought EMSs are shaded in Fig. 10b.

4.3.5. Placement procedure

The placement procedure follows a sequential process which
tries to pack a box or a layer of boxes at each stage. The procedure
combines four elements: the list BTPS of box types defined by the
genetic algorithm, a list S of empty maximal-spaces, initially con-
taining only container C, the BBL procedure, and the vector of layer
types (VLT) also defined by the GA. Each stage is composed of the
following five main steps:
(1)
 box type selection;

(2)
 maximal-space selection;

(3)
 layer type selection;

(4)
 layer packing;

(5)
 state information update.
The pseudo-code of the placement procedure is given in Fig. 11.
The box type selection step consists in choosing from BTPS the
first box type kn which has not yet been used (lines 9–11 of the
pseudo-code). The maximal-space selection is carried out by
the BBL procedure and the list S to produce EMSn (lines 12–13
of the pseudo-code). If a maximal-space was found in the
previous step, then the layer selection uses VLT, the vector Layers,
and all the possible layer types of box type kn that can be packed
into EMSn, to obtain the selected layer type Layersn (lines 17–19 of
the pseudo-code). The layer packing step consists in packing
Layern into EMSn (lines 17–19 of the pseudo-code). The final step,
state information update, consists in updating the remaining
quantities of the box type packed kn and updating list S, using
the DP and MaxJoin procedures, as well as some flags (Skip and
Placed) (lines 21–31 of the pseudo-code).

4.4. Parallel implementation

We limit parallelization only to the task that performs the
evaluation of the chromosome fitness since it is the most time
consuming. The tasks related with the GA logic were not parallelized
since they consume very little time. This type of parallelization is
easy to implement and in multi-core CPUs allows for a large
reduction in computational times (almost a linear speed-up with
the number of cores). The parallel implementation of our heuristic
was done using the OpenMP Application Program Interface (API)
which supports multi-platform shared-memory parallel program-
ming in C/Cþþ .

5. Numerical experiments

In this section we report on results obtained on a set of
experiments conducted to evaluate the performance of the
multi-population biased random key genetic algorithm for a
container loading problem (BRKGA-CLP) proposed in this paper.

5.1. Benchmark algorithms

We compare BRKGA-CLP with the 13 approaches listed in Table 1.
These approaches are the most effective in the literature to date.

5.2. Test problem instances

The effectiveness of BRKGA-CLP is evaluated by solving
the complete set of 1500 benchmark problems proposed by



Fig. 11. Pseudo-code for the PLACEMENT procedure.

Table 1
Efficient approaches used for comparison.

Approach Source of approach Type of method

T_BB Terno et al. [14] Branch and bound

BG_GA Bortfeldt and Gehring [10] GA

BG_PGA Bortfeldt and Gehring [43] Parallel GA

E_TRS Eley [15] Tree search (TRS)

L_GH Lim et al. [24] Greedy heuristic

B_PTS Bortfeldt et al. [16] Parallel tabu search (TS)

B_NMP Bischoff [25] Nelder–Mead procedure

M_SATS Mack et al. [17] Parallel SA/TS

MO_GR Moura and Oliveira [21] GRASP

P_GR Parreno et al. [22] GRASP

P_VNS Parreno et al. [44] VNS

FB_TRS Fanslau and Bortfeldt [7] TRS

HH_HBS He and Huang [45] Heuristic beam search
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Bischoff and Ratcliff [1] and Davies and Bischoff [2]. These
instances have cargo that range from weakly heterogeneous to
strongly heterogeneous. The benchmark set is divided into 15 test
cases, each with 100 instances, and are referred to as BRD_01 to
BRD_15. The number of different box types in each case are 3, 5, 8,
10, 12, 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100. The structure of
each problem changes gradually from weakly heterogeneous to
strongly heterogeneous according to the decreasing average
number of boxes per type. In test case BRD_01 there are on
average 50.15 boxes for each box type, whereas in test case
BRD_15 the average number is only 1.33. Each individual instance
never exceeds the volume of the container and the average of
available cargo is over 99.46% of the capacity of the container. The
dimensions of the boxes were generated independently of the
dimensions of the container, therefore there is no guarantee that
all the boxes will fit into the container. The percentage given
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should be seen as a loose upper bound on the volume of the
container attainable by an optimal packing.

Each instance includes the orientation constraint (C1), which
prohibits the use of certain larger side dimension as height
dimension.

5.3. GA configuration

Configuring genetic algorithms is oftentimes more an art form
than a science. In our past experience with genetic algorithms
based on the same evolutionary strategy (see [34–41,31,42]), we
obtained good results with values of TOP, BOT, and crossover
probability (CProb) in the intervals shown in Table 2.

For the population size, we have obtained good results by
indexing it to the dimension of the problem, i.e. we use small size
populations for small problems and larger populations for larger
problems. With this in mind, we conducted a small pilot study to
Table 2
Range of parameters in past implementations.

Parameter Interval

TOP 0.10–0.25

BOT 0.15–030

Crossover probability (CProb) 0.70–0.80

Table 3
Configuration used on all runs in the computational experiments.

Population size 20�number of input boxes

Crossover probability 0.7

TOP The 15% most fit chromosomes from the previous

generation are copied to the next generation

BOT 15% of the next generation is made up of mutants,

i.e. individuals with randomly generated

chromosomes

Number of

populations

3

Exchange

information btw pops

Every 15 generations

Fitness Maximize % total packed volume

Stopping criterion Stop after 500 generations

Table 4
Performance comparison of BRKGA-CLP with other approaches when support constrain

Test case T_BB BG_GA BG_PGA E_TRS

BRD_01 89.9 87.81 88.10 88.0

BRD_02 89.6 89.40 89.56 88.5

BRD_03 89.2 90.48 90.77 89.5

BRD_04 88.9 90.63 91.03 89.3

BRD_05 88.3 90.73 91.23 89.0

BRD_06 87.4 90.72 91.28 89.2

BRD_07 86.3 90.65 91.04 88.0

BRD_08 – 89.73 90.26 –

BRD_09 – 89.06 89.50 –

BRD_10 – 88.40 88.73 –

BRD_11 – 87.53 87.87 –

BRD_12 – 86.94 87.18 –

BRD_13 – 86.25 86.70 –

BRD_14 – 85.55 85.81 –

BRD_15 – 85.23 85.48 –

Avg. 01–07 88.51 90.06 90.43 88.79

Avg. 08–15 – 87.34 87.69 –

Avg. 01–15 – 88.61 88.97 –

Note: The best values appear in bold.
obtain a reasonable configuration. We tested all the combinations
of the following values:
�

t (C
TOPAf0:10,0:15,0:20,0:25g;

�
 BOTAf0:15,0:20,0:25,0:30g;

�
 CProbAf0:70,0:75,0:80g;

�
 population size with 10, 15, 20, and 25 times the number of

rectangles in the problem instance.

For each of the 192 possible configurations, we made three
independent runs of the algorithm (with three distinct seeds for
the random number generator) and computed the average total
value. The configuration that minimized the sum, over the pilot
problem instances, was TOP¼ 15%, BOT ¼ 15%, CProb¼ 0:7, and
population size¼20 times the number of rectangles in the problem
instance. After some experimentation with the problem instances in
the pilot study we came to the conclusion that using three parallel
populations and exchanging information every 15 generations was a
reasonable configuration for this type of problem. The configuration
presented in Table 3 was held constant for all experiments and all
problem instances. The computational results presented in the next
section demonstrate that this configuration not only provides
excellent results in terms of solution quality but also very robust.
5.4. Computational results

Algorithm BRKGA-CLP was implemented in Cþþ. The computa-
tional experiments were carried out on a computer with a AMD
2.2 GHz Opteron 6-core CPU running the Linux (Fedora release
12) operating system.

All computational results show average values for the 100
instances of each test case. All tests where performed using the
configuration summarized in Table 3. For the purpose of compar-
ison and because some authors report computational results
where the support constraint (C2) is not enforced, we present
results for two versions of our approach: version BRKGA-CLP-S

(supported) that enforces the support constraint (C2) and version
BRKGA-CLP-U (unsupported) which does not.

We note that some of approaches in Table 1 report results only
for the first seven sets of weakly heterogeneous instances, BRD_
01–BRD_07. The complete computational results appear in Tables 4
and 5 for versions BRKGA-CLP-S and BRKGA-CLP-U, respectively.
2) is enforced.

B_NMP MO_GR FB_TRS

(packing variant)

BRKGA CLP-S

89.39 89.07 94.51 94.34

90.26 90.43 94.73 94.88
91.08 90.86 94.74 95.05
90.90 90.42 94.41 94.75
91.05 89.57 94.13 94.58
90.70 89.71 93.85 94.39
90.44 88.05 93.20 93.74

– 86.13 92.26 92.65
– 85.08 91.48 91.90
– 84.21 90.86 91.28
– 83.98 90.11 90.39
– 83.64 89.51 89.81
– 83.54 88.98 89.27
– 83.25 88.26 88.57
– 83.21 87.57 87.96

90.55 89.73 94.22 94.53
– 84.13 89.88 90.23
– 86.74 91.91 92.24



Table 5
Performance comparison of BRKGA-CLP with other approaches when support constraint (C2) is not enforced.

Test case L_GH B_PTS M_SATS P_GR (200 000) P_GR (5000) P_VNS FB_TRS

(cutting variant)

HH_HBS BRKGA CLP-U

BRD_01 88.70 93.52 93.70 93.85 93.27 94.93 95.05 87.54 95.28
BRD_02 88.17 93.77 94.30 94.22 93.38 95.19 95.43 89.12 95.90
BRD_03 87.52 93.58 94.54 94.25 93.39 94.99 95.47 90.32 96.13
BRD_04 87.58 93.05 94.27 94.09 93.16 94.71 95.18 90.57 96.01
BRD_05 87.30 92.34 93.83 93.87 92.89 94.33 95.00 90.78 95.84
BRD_06 86.86 91.72 93.34 93.52 92.62 94.04 94.79 90.91 95.72
BRD_07 87.15 90.55 92.50 92.94 91.86 93.53 94.24 90.88 95.29
BRD_08 – – – – 91.02 92.78 93.70 90.85 94.76
BRD_09 – – – – 90.46 92.19 93.44 90.64 94.34
BRD_10 – – – – 89.87 91.92 93.09 90.43 93.86
BRD_11 – – – – 89.36 91.46 92.81 90.23 93.60
BRD_12 – – – – 89.03 91.20 92.73 89.97 93.22
BRD_13 – – – – 88.56 91.11 92.46 89.88 92.99
BRD_14 – – – – 88.46 90.64 92.40 89.67 92.68
BRD_15 – – – – 88.36 90.38 92.40 89.54 92.46

Avg. 01–07 87.61 92.70 93.78 93.82 92.94 94.53 95.02 90.02 95.74
Avg. 08–15 – – – – 89.39 91.46 92.88 90.15 93.49
Avg. 01–15 – – – – 91.05 92.89 93.88 90.09 94.54

Note: The best values appear in bold.

Table 6
Computational times (s) for best three approaches.

Avg. time (s) for test cases BRD_01–BRD_15

Parreno

et al. [44]

Fanslau and

Bortfeldt [7]

BRKGA-CLP

Supported – 320 232

Unsupported 238 320 147
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As can be observed from Tables 4 and 5 both versions of BRKGA-

CLP obtain the best overall results (for BRKGA-CLP-S: mean
01–07¼94.53%, mean 08–15¼90.23%, mean 01–15¼92.24% while
for BRKGA-CLP-U: mean 01–07¼95.74%, mean 08–15¼93.49%,
mean 01–15¼94.54%). The second best approach is FB_TRS, which
obtains overall means 01–15 which are 0.26% and 0.59% worst than
those of BRKGA-CLP. BRKGA-CLP is only outperformed by FB_TRS for
test case BRD_01 when full support is enforced. For all the other test
cases BRKGA-CLP finds better average solutions than any of the other
approaches.

In terms of computational times we cannot make any fair and
meaningful comments since all the other approaches were imple-
mented and tested on computers with different computing power.
Instead, we limit ourselves to reporting the average running times
for the best three approaches (Table 6).
6. Concluding remarks

In this paper we addressed the single container loading problem
(3D-CLP), where several rectangular boxes of different sizes are to be
loaded into a single rectangular container. The approach uses a
novel multi-population biased random-key genetic algorithm
(BRKGA). To manage the free spaces in the container we use a
maximal-space representation. The proposed algorithm hybridizes a
novel placement procedure with a multi-population BRKGA. The
BRKGA is used to evolve the order in which the box types are loaded
into the container and the corresponding type of layer used in the
placement procedure. A heuristic is used to determine the maximal-
space where each box is placed. A novel procedure is developed for
joining free spaces in the case where full support from below is
required. Two variants of the approach (with and without enforce-
ment of full support from below) are extensively tested on the
complete set of benchmark problems of Bischoff and Ratcliff [1] and
Davies and Bischoff [2]. The benchmark set is made up of 1500
instances which range from weakly to strongly heterogeneous cargo.
Both variants are compared with 13 other solution techniques.

The computational experiments demonstrate that not only the
approach performs very well in all types of instance classes but also
it obtains the best overall results when compared with other
approaches published in the literature. The approach has improved
the overall averages from 93.88% and 91.91% to 94.54% and 92.24%,
respectively, for the unsupported and supported cases .
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